Retinal axon regeneration in the lizard Gallotia galloti in the presence of CNS myelin and oligodendrocytes.

نویسندگان

  • D M Lang
  • M Monzón-Mayor
  • C E Bandtlow
  • C A Stuermer
چکیده

Retinal ganglion cell (RGC) axons in lizards (reptiles) were found to regenerate after optic nerve injury. To determine whether regeneration occurs because the visual pathway has growth-supporting glia cells or whether RGC axons regrow despite the presence of neurite growth-inhibitory components, the substrate properties of lizard optic nerve myelin and of oligodendrocytes were analyzed in vitro, using rat dorsal root ganglion (DRG) neurons. In addition, the response of lizard RGC axons upon contact with rat and reptilian oligodendrocytes or with myelin proteins from the mammalian central nervous system (CNS) was monitored. Lizard optic nerve myelin inhibited extension of rat DRG neurites, and lizard oligodendrocytes elicited DRG growth cone collapse. Both effects were partially reversed by antibody IN-1 against mammalian 35/250 kD neurite growth inhibitors, and IN-1 stained myelinated fiber tracts in the lizard CNS. However, lizard RGC growth cones grew freely across oligodendrocytes from the rat and the reptilian CNS. Mammalian CNS myelin proteins reconstituted into liposomes and added to elongating lizard RGC axons caused at most a transient collapse reaction. Growth cones always recovered within an hour and regrew. Thus, lizard CNS myelin and oligodendrocytes possess nonpermissive substrate properties for DRG neurons--like corresponding structures and cells in the mammalian CNS, including mammalian-like neurite growth inhibitors. Lizard RGC axons, however, appear to be far less sensitive to these inhibitory substrate components and therefore may be able to regenerate through the visual pathway despite the presence of myelin and oligodendrocytes that block growth of DRG neurites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regeneration of retinal axons in the lizard Gallotia galloti is not linked to generation of new retinal ganglion cells.

Using anterograde tracing with HRP and antibodies (ABs) against neurofilaments, we show that regrowth of retinal ganglion cell (RGC) axons in the lizard Gallotia galloti commences only 2 months after optic nerve transection (ONS) and continues over at least 9 months. This is unusually long when compared to RGC axon regeneration in fish or amphibians. Following ONS, lizard RGCs up-regulate the i...

متن کامل

Growth of Regenerating Goldfish Axons Is Inhibited by Rat Oligodendrocytes and CNS Myelin but Not by Goldfish Optic Nerve Tract Oligodendrocytelike Cells and Fish CNS Myelin

Encounters of regenerating goldfish retinal axons with oligodendrocytes and CNS myelin of mammals and fish were monitored in in vitro assays. Upon contact with highly branched rat oligodendrocytes, goldfish axons collapsed or grew around but never crossed these cells. However, in the presence of the antibody IN-1 against the oligodendrocyteassociated growth-inhibitory proteins, axons did grow o...

متن کامل

Growth of regenerating goldfish axons is inhibited by rat oligodendrocytes and CNS myelin but not but not by goldfish optic nerve tract oligodendrocytelike cells and fish CNS myelin.

Encounters of regenerating goldfish retinal axons with oligodendrocytes and CNS myelin of mammals and fish were monitored in in vitro assays. Upon contact with highly branched rat oligodendrocytes, goldfish axons collapsed or grew around but never crossed these cells. However, in the presence of the antibody IN-1 against the oligodendrocyte-associated growth-inhibitory proteins, axons did grow ...

متن کامل

Nonlinear, fractal, and spectral analysis of the EEG of lizard, Gallotia galloti.

Electroencephalogram (EEG) from dorsal cortex of lizard Gallotia galloti was analyzed at different temperatures to test the presence of fractal or nonlinear structure during open (OE) and closed eyes (CE), with the aim of comparing these results with those reported for human slow-wave sleep (SWS). Two nonlinear parameters characterizing EEG complexity [correlation dimension (D2)] and predictabi...

متن کامل

E587 antigen is upregulated by goldfish oligodendrocytes after optic nerve lesion and supports retinal axon regeneration.

The properties of glial cells in lesioned nerves contribute quite substantially to success or failure of axon regeneration in the CNS. Goldfish retinal axons regenerate after optic nerve lesion (ONS) and express the L1-like cell adhesion protein E587 antigen on their surfaces. Goldfish oligodendrocytes in vitro also produce E587 antigen and promote growth of both fish and rat retinal axons. To ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Glia

دوره 23 1  شماره 

صفحات  -

تاریخ انتشار 1998